

Curvature

Exercise 1

Conformal sectional curvature and Laplacian.

Let g be the standard Riemannian metric on \mathbb{R}^2 and $U \subset \mathbb{R}^2$ be an open subset. On U we consider $g' = \varphi g$ where $\varphi = U \rightarrow \mathbb{R}$ is smooth.

- Under what condition on φ does g' define a Riemannian metric on U ?

Let $\varphi = e^{2\sigma}$.

- Let ∇ denote the Levi-Civita connection associated with the metric g and ∇' the connection associated with g' . Show that for all $X, Y \in \Gamma(TU)$,

$$\nabla'_X Y = \nabla_X Y + (X \cdot \sigma)Y + (Y \cdot \sigma)X - g(X, Y)\nabla^g \sigma$$

where $\nabla^g \sigma$ is the vector field defined by $T_x \sigma(h) = g_x(\nabla^g \sigma(x), h)$ for all $h \in T_x U$.

- Let $\partial_x = \frac{\partial}{\partial x}$ and $\partial_y = \frac{\partial}{\partial y}$ be the coordinate vector fields. Compute, in terms of σ , the Christoffel coefficients of the connection ∇' .
- Give the sectional curvature of g' in terms of the Laplacian of σ , $\Delta\sigma$.
- Prove (again ?) that the hyperbolic metric of the upper half-plane model of $\mathbb{H}_{\mathbb{R}}^2$ has curvature -1 .

Exercise 2

Jacobi fields for surfaces and curvature.

Let (M, g) be a Riemannian manifold of dimension 2, x a point in M , and U a neighborhood of the origin in $T_x M$ on which \exp_x is a diffeomorphism onto its image. We consider the metric $h = \exp_x^* g$ on U . Using Gauss lemma, h can be expressed in polar coordinates (r, θ) on $U \setminus \{0\}$ as $h = dr^2 + f^2(r, \theta)d\theta^2$.

Let u, v be an oriented orthonormal basis for h_0 . We assume that the polar coordinates have been chosen such that the angle θ associated with u is zero.

- Let $c : r \mapsto ru$. Let J be the Jacobi field along c with initial conditions $J(0) = 0$ and $\frac{d}{dr}J(0) = v$. Prove $J(r) = f(r, 0)V(r)$ where $r \mapsto V(r)$ is the parallel transport of v along c .
- Deduce that the sectional curvature of h at $c(r)$ is $-\frac{\partial_r^2 f(r, 0)}{f(r, 0)}$.
- Compute (again ?) the sectional curvature of \mathbb{E}^2 , \mathbb{S}^2 , and (bonus) \mathbb{H}^2 .

Exercise 3

Sectional curvature and length of small circles.

Let (M, g) be a Riemannian manifold and x a point in M . Let P be a 2-plane in $T_x M$ and (u, v) an orthonormal basis of P . We set $H(r, \theta) = \exp_x(r \cos(\theta)u + r \sin(\theta)v)$ for $0 < r < \text{inj}_x$ and $\theta \in \mathbb{R}/2\pi\mathbb{Z}$. For such r , we denote the curve $\theta \mapsto H(r, \theta)$ by C_r .

- Show that, for every θ_0 , $J_{\theta_0} : r \mapsto \frac{d}{d\theta} \Big|_{\theta=\theta_0} H(r, \theta)$ is a Jacobi field.
- Show that $\|J_{\theta}(r)\| = r - \frac{K(P)}{6}r^3 + o(r^3)$.
- Prove that $L(C_r) = 2\pi r \left(1 - \frac{K(P)}{6}r^2 + o(r^2)\right)$.

4. Compute again the curvature of \mathbb{S}^2 by computing directly $L(C_r)$.

Exercise 4 Theorema Egregium.

Let S be a (smooth) surface in \mathbb{R}^3 and $N : S \rightarrow \mathbb{S}^2$ be a (smooth) unit normal vector field for S . Recall that $T_p N$ is self-adjoint and the product of its eigenvalues is called the Gaussian curvature K_G of S . Moreover, the second fundamental form \mathbb{II} is the quadratic form defined by $\mathbb{II}_p(u, v) = -\langle T_p N \cdot u, v \rangle$ for all $p \in S$.

On S we consider the metric induced by the Riemannian metric on \mathbb{R}^3 , ∇ the associated Levi-Civita connection and R its curvature.

Let $\nabla^{\mathbb{R}^3}$ be the Levi-Civita connection on \mathbb{R}^3 associated to the standard metric.

1. Let $X, Y \in \Gamma(TS)$ and extend arbitrarily X and Y in a neighborhood of S . Prove that

$$\nabla_X^{\mathbb{R}^3} Y = \nabla_X Y + \mathbb{II}(X, Y)N.$$

2. Prove that, for all $X, Y, Z, W \in \Gamma(TS)$

$$R(X, Y, Z, W) = \mathbb{II}(X, W) \mathbb{II}(Y, Z) - \mathbb{II}(X, Z) \mathbb{II}(Y, W)$$

3. Prove that the sectional curvature is the Gaussian curvature (and therefore the Gaussian curvature of a surface is invariant under local isometry)