

Exercise 1 Lie groups and Riemannian geometry.

Let G be a (real) Lie group with Lie algebra \mathfrak{g} .

1. Prove there is a unique connection ∇ on TG such that, for any left-invariant vector fields X and Y on G , $\nabla_X Y = \frac{1}{2}[X, Y]$.
2. Prove that ∇ is torsion free.
3. (Preview) Compute $R(X, Y)Z$ for left-invariant vector fields X, Y and Z .
4. Prove that, for every X in \mathfrak{g} and every $g \in G$, $t \mapsto g \exp_G(tX)$ is a geodesic for ∇ . Prove that all geodesics have this shape.
5. In this question, we assume G is equipped with a Riemannian metric h that is invariant under all left and right translations (we say h is bi-invariant). We denote by h_1 the corresponding inner product on \mathfrak{g} .
 - (a) Prove that, for every $g \in G$, h_1 is $\text{Ad}(g)$ -invariant.
 - (b) Prove that, for every $X \in \mathfrak{g}$, $\text{ad}(X)$ is antisymmetric on \mathfrak{g} with respect to h_1 .
 - (c) Using the method used in class to prove uniqueness of the Levi-Civita connection, compute that Levi-Civita connection acting on left-invariant vector fields. Describe Riemannian geodesics.
 - (d) (Preview) For every X and Y in \mathfrak{g} with $\|X\| = \|Y\| = 1$ and $X \perp Y$, compute the sectional curvature of $\text{Span}(X, Y)$.
6. We now assume G is compact.
 - (a) Using a right-invariant volume form on G , prove that \mathfrak{g} admits an inner product invariant under the adjoint action of G on \mathfrak{g} .
 - (b) Prove that G admit a bi-invariant metric.
 - (c) Prove \exp_G is surjective.

Exercise 2 Convexity for small-radius balls.

Let (M, g) be a Riemannian manifold of dimension n and $m \in M$. Let $U \subset T_m M$ be a neighborhood of the origin such that $\exp_m : U \rightarrow \exp_m(U)$ is a diffeomorphism.

On U , we consider the Riemannian metric $h = \exp_m^* g$ and the associated distance d . We also consider the dot product h_0 at 0 and the associated norm $\|u\| = h_0(u, u)^{\frac{1}{2}}$. This norm can be extended to $T_x U$ for all $x \in U$. Let (e_1, \dots, e_n) be an orthonormal basis for h_0 . This basis gives us a basis of $T_x U$ for all $x \in U$.

1. For $x \in U$, the Christoffel tensor defines a bilinear map Γ_x on $T_x U$ with values in $T_x U$

$$\Gamma_x(u, v) = \sum_{k=1}^n \sum_{i,j=1}^n \Gamma_{i,j}^k(x) u_i v_j e_k.$$

Show that there exists $\epsilon_0 \in (0, 1)$ such that if x belongs to B_{ϵ_0} , the ball centered at 0 with radius ϵ_0 for $\|\cdot\|$, we have $\|\Gamma_x(u, v)\| \leq \delta \|u\| \cdot \|v\|$ for some $0 \leq \delta < 1$.

2. Let $c : [0, a] \rightarrow U$ be a geodesic contained in B_{ϵ_0} . Assume that for some $0 < \epsilon < \epsilon_0$, and $t_0 \in (0, a)$, we have $c(t_0) \in S_\epsilon = \partial \overline{B}_\epsilon$, and $c'(t_0) \neq 0$ is tangent to S_ϵ . Prove that there exists $\lambda > 0$ such that for t sufficiently close to t_0 , we have:

$$d(0, c(t))^2 \geq d(0, c(t_0))^2 + \lambda(t - t_0)^2.$$

Hint: Consider the function $F(t) = \frac{\|c(t)\|^2}{2}$ and show that $F''(t_0) > 0$.

3. Deduce that if $r > 0$ is small enough, the ball \overline{B}_r is convex in the sense that if x and y are in \overline{B}_r , there exists a geodesic, unique up to affine reparameterization and minimizing, connecting x and y , which is entirely contained in \overline{B}_r .

Preview

Let g be the standard Riemannian metric on \mathbb{R}^2 and $U \subset \mathbb{R}^2$ be an open subset. On U we consider $g' = \varphi g$ where $\varphi = U \rightarrow \mathbb{R}$ is smooth.

1. Under what condition on φ does g' define a Riemannian metric on U ?

Let $\varphi = e^{2\sigma}$.

2. Let ∇ denote the Levi-Civita connection associated with the metric g and ∇' the connection associated with g' . Show that for all $X, Y \in \Gamma(TU)$,

$$\nabla'_X Y = \nabla_X Y + (X \cdot \sigma)Y + (Y \cdot \sigma)X - g(X, Y)\nabla^g \sigma.$$

Where $\nabla^g \sigma$ is the vector field defined by $T\sigma_x(h) = g_x(\nabla^g \sigma(x), h)$ for all $h \in T_x U$.

3. Let $\partial_x = \frac{\partial}{\partial x}$ and $\partial_y = \frac{\partial}{\partial y}$ be the coordinate vector fields. Compute, in terms of σ , the Christoffel coefficients of the connection ∇'
4. Give the sectional curvature of g' in terms of the Laplacian of σ , $\Delta\sigma$.
5. Prove (again ?) that the hyperbolic metric of the upper half-plane model of $\mathbb{H}_{\mathbb{R}}^2$ has curvature -1 .