

Exercise 1

Exercise 2 Convexity for small-radius balls.

Let (M, g) be a Riemannian manifold of dimension n and $m \in M$. Let $U \subset T_m M$ be a neighborhood of the origin such that $\exp_m : U \rightarrow \exp_m(U)$ is a diffeomorphism.

On U , we consider the Riemannian metric $h = \exp_m^* g$ and the associated distance d . We also consider the dot product h_0 at 0 and the associated norm $\|u\| = h_0(u, u)^{\frac{1}{2}}$. This norm can be extended to $T_x U$ for all $x \in U$. Let (e_1, \dots, e_n) be an orthonormal basis for h_0 . This basis gives us a basis of $T_x U$ for all $x \in U$.

1. For $x \in U$, the Christoffel tensor defines a bilinear map Γ_x on $T_x U$ with values in $T_x U$

$$\Gamma_x(u, v) = \sum_{k=1}^n \sum_{i,j=1}^n \Gamma_{i,j}^k(x) u_i v_j e_k.$$

Show that there exists $\epsilon_0 \in (0, 1)$ such that if x belongs to B_{ϵ_0} , the ball centered at 0 with radius ϵ_0 for $\|\cdot\|$, we have $\|\Gamma_x(u, v)\| \leq \delta \|u\| \cdot \|v\|$ for some $0 \leq \delta < 1$.

2. Let $c : [0, a] \rightarrow U$ be a geodesic contained in B_{ϵ_0} . Assume that for some $0 < \epsilon < \epsilon_0$, and $t_0 \in (0, a)$, we have $c(t_0) \in S_\epsilon = \partial \overline{B}_\epsilon$, and $c'(t_0) \neq 0$ is tangent to S_ϵ . Prove that there exists $\lambda > 0$ such that for t sufficiently close to t_0 , we have:

$$d(0, c(t))^2 \geq d(0, c(t_0))^2 + \lambda(t - t_0)^2.$$

Hint: Consider the function $F(t) = \frac{\|c(t)\|^2}{2}$ and show that $F''(t_0) > 0$.

3. Deduce that if $r > 0$ is small enough, the ball \overline{B}_r is convex in the sense that if x and y are in \overline{B}_r , there exists a geodesic, unique up to affine reparameterization and minimizing, connecting x and y , which is entirely contained in \overline{B}_r .

Solution.

1. As $h = \exp_m^* g$, we have $\Gamma_{i,j}^k(0) = 0$ for all $1 \leq i, j, k \leq n$. Fix $\eta > 0$. As the $\Gamma_{i,j}^k$ are continuous, there exists ϵ_0 such that for all $x \in \overline{B}_{\epsilon_0}$ we have $|\Gamma_{i,j}^k(x)| \leq \eta$ for all $1 \leq i, j, k \leq n$. Then, for all $u, v \in T_x U$ we have

$$\|\Gamma_x(u, v)\| \leq \sum_{i,j,k=1}^n |\Gamma_{i,j}^k(x)| |u_i| |v_j| \leq n^3 \eta \|u\| \|v\|.$$

For $\eta < 1/n^3$, we obtain $\|\Gamma_x(u, v)\| \leq \delta \|u\| \|v\|$ with $\delta = n^3 \eta < 1$.

2. Let $F : [0, a] \rightarrow \mathbb{R}$ be defined by $F(t) = \|c(t)\|^2/2$. The geodesic c is smooth and so is F . For all $t \in (0, a)$, we have

$$\begin{aligned} F(t) &= \frac{h_0(c(t), c(t))}{2} \\ F'(t) &= h_0(c'(t), c(t)) \\ F''(t) &= h_0(c''(t), c(t)) + h_0(c'(t), c'(t)) \end{aligned}$$

At $t = t_0$, $c'(t)$ is tangent to $S_\epsilon = \{u \in U, h_0(u, u) = \epsilon\}$. Therefore $h_0(c'(t_0), c(t_0)) = 0$. Moreover, as c is a geodesic, we have

$$c''(t_0) = - \sum_{i,j,k=1}^n \Gamma_{i,j}^k(c(t_0)) c'_i(t_0) c'_j(t_0) e_k = -\Gamma_{c(t_0)}(c'(t_0), c'(t_0)).$$

Thus

$$h_0(c''(t_0), c(t_0)) = h_0(-\Gamma_{c(t_0)}(c'(t_0), c'(t_0)), c(t_0)).$$

By Cauchy-Schwarz inequality, the estimate in the previous question and the inequality $\epsilon_0 \leq 1$, we obtain

$$\begin{aligned} |h_0(c''(t_0), c(t_0))| &\leq \|\Gamma_{c(t_0)}(c'(t_0), c'(t_0))\| \|c(t_0)\| \\ &\leq \delta \|c'(t_0)\|^2. \end{aligned}$$

Thus

$$F''(t_0) \geq \|c'(t_0)\|^2 (1 - \delta) > 0.$$

Using Taylor expansion, we obtain

$$F(t) = F(t_0) + \frac{F''(t_0)}{2}(t - t_0)^2 + o((t - t_0)^2)$$

and therefore

$$F(t) \geq F(t_0) + \lambda(t - t_0)^2$$

for t close enough to t_0 and $\lambda = \frac{F''(t_0)}{4}$. Now, as we use the exponential map, we have $d(0, x) = \|x\|$ for all $x \in U$ and therefore

$$d(0, c(t))^2 \geq d(0, c(t_0))^2 + \lambda(t - t_0)^2$$

for all t close enough to t_0 .

3. Choose $r < \epsilon_0/3$ small enough so that for all $x, y \in \overline{B}_r$, there exists a unique minimizing geodesic (up to affine reparameterization) connecting x and y in U . Let $x, y \in \overline{B}_r$. We have $d(x, y) \leq d(0, x) + d(0, y) \leq 2r$ and therefore the minimizing geodesic $c : [0, a] \rightarrow U$ connecting x and y is contained in $\overline{B}_{3r} \subset B_{\epsilon_0}$.

Let t_0 be such that $\|c(t)\|$ is maximal at t_0 (such a t_0 exists by compactness). If $t_0 \in (0, a)$, then $c'(t_0)$ is tangent to $S_{\|c(t_0)\|}$ and we can use the previous question. Therefore, for t close to t_0 , we have

$$d(0, c(t))^2 \geq d(0, c(t_0))^2 + \lambda(t - t_0)^2$$

and therefore

$$d(0, c(t)) > d(0, c(t_0))$$

for t close to t_0 and $t \neq t_0$. This is a contradiction. Therefore $t_0 \in \{0, a\}$ and $c([0, a]) \subset \overline{B}_r$.