

Riemannian metrics

Exercise 1 The sphere. Let $\mathbb{S}^2 \subset \mathbb{R}^3$ be the unit sphere. We consider the metric on \mathbb{S}^2 inherited from the Euclidean metric on \mathbb{R}^3 .

1. Give a formula for the stereographic projection from the north pole $\varphi : \mathbb{S}^2 \setminus \{N\} \rightarrow \mathbb{R}^2$ and for its inverse map.
2. Let \bar{g} be the metric on \mathbb{R}^2 induced from the metric on \mathbb{S}^2 by the stereographic projection.
 - (a) Compute \bar{g} using the definition of the pull-back metric.
 - (b) Compute \bar{g} using more geometric arguments.
3. Show that $O(3)$ acts isometrically on \mathbb{S}^2 and acts transitively on orthonormal basis on \mathbb{S}^2 .

Exercise 2 The hyperbolic hyperboloid. In \mathbb{R}^3 , we consider H the upper sheet ($z > 0$) of the two-sheeted hyperboloid $z^2 - x^2 - y^2 = 1$. On H , we consider the metric induced by the Minkowski metric $dx^2 + dy^2 - dz^2$ in \mathbb{R}^3 . Note that the Minkowski metric is a Lorentz metric not a Riemannian metric but we will prove that h is a Riemannian metric.

1. Let $S = (0, 0, -1)$. Let $B(0, 1)$ be the unit ball in \mathbb{R}^2 . Define $\varphi : H \rightarrow B(0, 1)$, an hyperbolic stereographic projection from S . Give a formula for φ and its inverse map.
2. Let \bar{g} be the metric on $B(0, 1)$ induced from the metric on H by the hyperbolic stereographic projection. Compute \bar{g} .
3. Let $O_+(2, 1)$ be the subgroup of $O(2, 1)$ preserving H . Show that $O_+(2, 1)$ acts isometrically on H and acts transitively on orthonormal basis on H .

Exercise 3 The cone. (Bonus.) Let $C = \{(x, y, z) \in \mathbb{R}^3 \mid z^2 = x^2 + y^2, z > 0\}$ be an open cone. We consider on C the metric g inherited from the Euclidean metric on \mathbb{R}^3 .

1. Write the standard metric on \mathbb{R}^2 in polar coordinates.
2. Let $p : C \rightarrow \mathbb{R}^2 \setminus \{(0, 0)\}$ be the restriction to C of the projection $(x, y, z) \mapsto (x, y)$. Determine the induced metric $\bar{g} = p_* g$ on $\mathbb{R}^2 \setminus \{(0, 0)\}$ in polar coordinates by calculation and by a geometric argument.

Vector bundles

Exercise 4 $L(E, F)$. Let M be a manifold and E and F be two vector bundles over M . Describe transitions maps for local trivializations for the vector bundle $L(E, F)$.

Exercise 5 Triviality of vector bundles. (Bonus.)

1. Let γ_n be the tautological bundle over the projective space $\mathbb{R}\mathbb{P}^n = P(\mathbb{R}^{n+1})$ (with $n \geq 1$). Recall that its total space is $\{(x, v) \in \mathbb{R}\mathbb{P}^n \times \mathbb{R}^{n+1} \mid v \in x\}$.

(a) Show that if s is a nowhere-vanishing continuous section of γ_n , then there exists a continuous map $t : \mathbb{R}^{n+1} \setminus \{0\} \rightarrow \mathbb{R}^*$ such that $s(\mathbb{R}v) = t(v)v$.

(b) Show that the vector bundle γ_n is not trivial.

2. Show that the tangent bundle of S^3 is trivial.
Hint. Use Exercise 1 in Sheet 1 (on Lie groups).

3. Let ξ be a real vector bundle of rank 1 over M . Show that the bundle $\text{End}(\xi)$ of endomorphisms of ξ is always trivial.

Preview of Sheet 8

1. Let ξ be a vector bundle over a manifold M , endowed with a connection ∇ . Show that the formula:

$$(\nabla_X^* \varphi)(\sigma) = X \cdot (\varphi(\sigma)) - \varphi(\nabla_X \sigma)$$

for $X \in \Gamma(TM)$, $\varphi \in \Gamma(\xi^*)$, and $\sigma \in \Gamma(\xi)$ defines a connection ∇^* on ξ^* .

2. Using the coordinates $(\theta, \varphi) \mapsto (\cos \theta \cos \varphi, \cos \theta \sin \varphi, \sin \theta)$ for the sphere \mathbb{S}^2 , compute $\nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \theta}$.

References

Exercices 1 and 2. John M. Lee. *Riemannian Manifolds*. Chapter 3. Section *The Model Spaces of Riemannian Geometry*